Kennt ihr auch das Klexikon für Lese-Anfänger? Auf MiniKlexikon.de findet ihr mehr als 900 Artikel von A wie Aal bis Z wie Zoo.
Symmetrie: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „== Symmetrie == Mit dem Begriff Symmetrie bezeichnet man die Handlung, mit der ein Objekt, zum Beispiel durch Bewegungen wie einer Spiegelung, Drehung oder Ver…“) |
(→Was ist Achsensymmetrie?) |
||
Zeile 4: | Zeile 4: | ||
== Was ist Achsensymmetrie? == | == Was ist Achsensymmetrie? == | ||
− | Die Achsensymmetrie ist eine | + | Die Achsensymmetrie ist eine Form der Symmetrie. Oft wird sie auch Spiegelsymmetrie genannt. Jedes Objekt, das an einer Achse gespiegelt wird, bildet mit seinem erzeugten Spiegelbild eine achsensymmetrische Figur. Der Spiegel ist in diesem Fall die Symmetrieachse. |
Es gibt aber auch Figuren, die bereits in sich achsensymmetrisch sind. Dann findet man in dieser Figur mindestens eine Symmetrieachse. | Es gibt aber auch Figuren, die bereits in sich achsensymmetrisch sind. Dann findet man in dieser Figur mindestens eine Symmetrieachse. | ||
Würde man diese achsensymmetrische Figur auf ein Blatt Papier malen, ließe sich eine Linie finden, die die Figur in zwei gleiche Hälften teilt. An dieser Linie (Symmetrieachse) könnte man das Papier falten, sodass beide Hälfte der Figur genau aufeinander passen – sie sind also deckungsgleich. | Würde man diese achsensymmetrische Figur auf ein Blatt Papier malen, ließe sich eine Linie finden, die die Figur in zwei gleiche Hälften teilt. An dieser Linie (Symmetrieachse) könnte man das Papier falten, sodass beide Hälfte der Figur genau aufeinander passen – sie sind also deckungsgleich. |
Version vom 3. Juli 2016, 11:56 Uhr
Symmetrie
Mit dem Begriff Symmetrie bezeichnet man die Handlung, mit der ein Objekt, zum Beispiel durch Bewegungen wie einer Spiegelung, Drehung oder Verschiebung, auf sich selbst abgebildet werden kann, also unverändert erscheint. Gelingt dies, so nennt man dieses Objekt symmetrisch. Symmetrisch sein können eindimensionale, zweidimensionale oder dreidimensionale Objekte. Manchmal werden auch zwei (oder mehrere) verschiedene Objekte als zueinander symmetrisch bezeichnet, wenn sie, zusammen betrachtet, eine symmetrische Figur bilden.
Was ist Achsensymmetrie?
Die Achsensymmetrie ist eine Form der Symmetrie. Oft wird sie auch Spiegelsymmetrie genannt. Jedes Objekt, das an einer Achse gespiegelt wird, bildet mit seinem erzeugten Spiegelbild eine achsensymmetrische Figur. Der Spiegel ist in diesem Fall die Symmetrieachse. Es gibt aber auch Figuren, die bereits in sich achsensymmetrisch sind. Dann findet man in dieser Figur mindestens eine Symmetrieachse. Würde man diese achsensymmetrische Figur auf ein Blatt Papier malen, ließe sich eine Linie finden, die die Figur in zwei gleiche Hälften teilt. An dieser Linie (Symmetrieachse) könnte man das Papier falten, sodass beide Hälfte der Figur genau aufeinander passen – sie sind also deckungsgleich.
Beispiele für die Achsensymmetrie sind in der Umwelt überall zu finden. Sieht man sich in der Natur beispielsweise einen Schmetterling an, so erscheinen beide Flügel achsensymmetrisch. Auch wir Menschen sehen auf den ersten Blick achsensymmetrisch aus: Alles, was es links gibt, gibt es auch rechts (Augen, Arme, Beine,...). Aber wenn man ganz genau hinsieht, bemerkt man, dass wir nicht perfekt achsensymmetrisch sind. Alleine schon an den Händen kann man Unterschiede feststellen. In der Natur gibt es also nur Beispiele für die Achsensymmetrie, die aber nicht mathematisch exakt achsensymmetrisch sind.
Andere Objekte in unserer Umwelt zum Beispiel im Bereich der Technik, wie das Flugzeug, bieten eine nahezu perfekte Achsensymmetrie an. Wäre ein Flugzeug nicht achsensymmetrisch, so könnte es nicht richtig fliegen. Auch das Schaukeln macht mehr Spaß, wenn die Schaukel achsensymmetrisch aufgehängt ist, sonst würde man ganz schief auf dem Brettchen sitzen.
In der Mathematik findet man die vollkommene Achsensymmetrie: Man erkennt sie daran, dass jeder Punkt der Figur links und rechts von der Symmetrieachse immer denselben Abstand hat. Ein Rechteck hat zum Beispiel genau zwei Symmetrieachsen. Im Gegensatz dazu hat der Kreis unendlich viele Symmetrieachsen, man könnte also noch viel mehr pinke Symmetrieachsen in das Bild einzeichnen.
Auch Palindrome, als besondere Muster in der Arithmetik, können achsensymmetrisch sein. Ein solches Palindrom ist zum Beispiel die Zahl 88088. In diesem Palindrom findet man zwei Symmetrieachsen. Dies liegt daran, dass jede Ziffer in sich sowohl eine vertikale, als auch horizontale Symmetrieachse hat.