Kennt ihr auch das Klexikon für Lese-Anfänger? Auf MiniKlexikon.de findet ihr mehr als 900 Artikel von A wie Aal bis Z wie Zoo.
Bruchrechnung: Unterschied zwischen den Versionen
(kat) |
K (Textersetzung - „Arbeit“ durch „Arbeit“) |
||
(28 dazwischenliegende Versionen von 7 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | + | [[Datei:Cake quarters.svg|mini|Dieser Kuchen wurde in vier Teile zerschnitten. Drei Viertel sind noch da. Ein Viertel fehlt.]][[Datei:2 Viertel gleich vier Achtel.png|mini|2 Viertel = 4 Achtel]] | |
+ | Bruchrechnung braucht man bei einer Teilung. Das ist nützlich, wenn etwas geteilt werden soll, was sich mit ganzen [[Zahl]]en nicht beschreiben lässt. Beispielsweise wenn es darum geht, einen Kuchen oder andere Dinge unter mehreren Menschen aufzuteilen. | ||
− | + | Den Bruch ½ kann man sich so denken, dass 1 Kuchen auf 2 Menschen verteilt wurde. Man kann sich aber auch vorstellen, dass 1 Kuchen in 4 Teile zerschnitten wurde und 1 Mensch hat 2 Teile bekommen. Oder der Kuchen wurde in 8 Teile zerschnitten und 1 Mensch hat 4 Teile erhalten. Dies zeigt das untere Bild. | |
− | + | Den Bruch ¾ kann man sich auf zwei Arten denken: Entweder wurde 1 Kuchen in 4 Stücke aufgeteilt und ein Mensch hat davon drei Stücke bekommen. Oder 3 Kuchen wurden auf 4 Menschen aufgeteilt. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | Etwas Bestimmtes ist der [[Dezimalzahl|Dezimalbruch]]. Er ist eigentlich ein Zehnerbruch. Das Ganze wurde also in 10, 100, 1000 oder in eine noch größere Zehnerzahl aufgeteilt. ½ heißt als Dezimalbruch 0,5. Ein halber [[Liter]] beispielsweise entspricht 5 Deziliter oder eben 0,5 Liter. So steht es auf den Petflaschen. ¾ sind dann 0,75 und so weiter. | |
− | + | ||
+ | Mit den Bruchrechnungen beginnt man in der oberen Hälfte der [[Grundschule]]. Kompliziertere Bruchrechnungen folgen jedoch erst in höheren Schulstufen. Dabei wird auch der Taschenrechner oder der [[Computer]] eingesetzt. Sie können komplizierte Systeme von Brüchen auflösen helfen. Dies erspart dem Schüler viel [[Arbeit]]. | ||
− | + | {{Artikel}} | |
− | + | [[Kategorie:Wissenschaft und Technik]] | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[ | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Aktuelle Version vom 13. März 2019, 23:40 Uhr
Bruchrechnung braucht man bei einer Teilung. Das ist nützlich, wenn etwas geteilt werden soll, was sich mit ganzen Zahlen nicht beschreiben lässt. Beispielsweise wenn es darum geht, einen Kuchen oder andere Dinge unter mehreren Menschen aufzuteilen.
Den Bruch ½ kann man sich so denken, dass 1 Kuchen auf 2 Menschen verteilt wurde. Man kann sich aber auch vorstellen, dass 1 Kuchen in 4 Teile zerschnitten wurde und 1 Mensch hat 2 Teile bekommen. Oder der Kuchen wurde in 8 Teile zerschnitten und 1 Mensch hat 4 Teile erhalten. Dies zeigt das untere Bild.
Den Bruch ¾ kann man sich auf zwei Arten denken: Entweder wurde 1 Kuchen in 4 Stücke aufgeteilt und ein Mensch hat davon drei Stücke bekommen. Oder 3 Kuchen wurden auf 4 Menschen aufgeteilt.
Etwas Bestimmtes ist der Dezimalbruch. Er ist eigentlich ein Zehnerbruch. Das Ganze wurde also in 10, 100, 1000 oder in eine noch größere Zehnerzahl aufgeteilt. ½ heißt als Dezimalbruch 0,5. Ein halber Liter beispielsweise entspricht 5 Deziliter oder eben 0,5 Liter. So steht es auf den Petflaschen. ¾ sind dann 0,75 und so weiter.
Mit den Bruchrechnungen beginnt man in der oberen Hälfte der Grundschule. Kompliziertere Bruchrechnungen folgen jedoch erst in höheren Schulstufen. Dabei wird auch der Taschenrechner oder der Computer eingesetzt. Sie können komplizierte Systeme von Brüchen auflösen helfen. Dies erspart dem Schüler viel Arbeit.
Zu „Bruchrechnung“ gibt es auch weitere Such-Ergebnisse von Blinde Kuh und Frag Finn.